If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+14p=0
a = 2; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·2·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*2}=\frac{-28}{4} =-7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*2}=\frac{0}{4} =0 $
| 3x/12+2/6=1/3 | | 9x-2=74 | | 4x+12+(180-112)=360 | | 6x+18=7x-2 | | 5,44^x=20 | | 2x-5=-12+5 | | 2x-70=8(x-5) | | x/7+5=-8 | | x+15=4x+12 | | x+4/6=1/3+x-3/4 | | 8x-x+6=-1 | | y=190-5 | | 9=(x^2-1) | | 1=1/10x | | -19+14x=15x-19 | | -21p-6(3-5p)=4(p-4)-22 | | 5(x+10)=-30 | | -9*x=54 | | 3x+18=35 | | (3x+4)=(2x+9) | | 14x=9900 | | 5x+7x-19=5 | | -18x=-12 | | 35=3(11+13x) | | x/8x=99/100 | | 8(x-2)=3x+5 | | 2x=10/x-4 | | 20x=+5 | | 43w+63+4w^2=0 | | x/8x=0.99 | | (x/8x)=(99/100) | | ((14x)/(14x+100))=99/100 |